Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 6th World Congress on Biopolymers Paris, France.

Submit your Abstract
or e-mail to

[email protected]
[email protected]
[email protected]

Day 3 :

Biopolymer Congress 2017 International Conference Keynote Speaker Mubarak Ahmed Khan photo
Biography:

Dr. Mubarak Ahmad Khan is Chief Scientific Officer (CSO) and Director General, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission. He did his Ph.D. in Radiation and Polymer Chemistry. He is working in several promising areas of Radiation Chemistry and Processing Technology, natural fiber reinforced polymer composites, nanotechnology, material science, biomedical science, applied science etc. Also experience in fiber reinforced polymer composite materials for various applications such as parts and body of auto car, panelized constriction materials, and bodies of electric appliances. Totally biodegradable composite materials based on natural fibers and degradable (both and synthetic) thermoplastic and resin for biomedical purposes. His focus is to use radiation-processing technology for biomedical purposes, renewable energy, Dye sensitized solar cell, modification of natural fibers; stimuli-responsive materials, hydrogel, scaffold form natural polymers. He has conducted research works in many countries including America, Germany, Japan and etc. He has worked in Germany (Technical University of Berlin, Fraunhofer Institute of Applied Polymer Research) as DAAD and Alexander von Humboldt (AvH) fellow, in Japan as MIF Fellow, as visiting scientist, in Australia (University of New South Wells) as IAEA fellow. Trained in Nuclear and Radiation Chemistry through various training course organized by IAEA. He is a part time Professor of Dhaka University, and visiting professor and examiner of various universities of Bangladesh. He is author/co-author of about 600 publications including 16 book chapters and a patent. He has served as project director/co-project director of different national and international scientific project on polymer science. Reviewers of different International Journals on Polymer and Composite Science as well Radiation supervised more than 300 M.Sc. 8 M. Phil and 13 PhD. Students. He is part time/visiting Professor of different universities of home and abroad. He has invented advanced wound dressing material from cow bone, liquid bio-fertilizer from textile effluent, natural plant growth promoter from prawn shell etc. He is also the inventor of Jutin (Jute Reinforced Polymer Corrugated Sheet) the outstanding housing material from jute plastic composite and food preservative using oligo chitosan (alternative to the formalin), He is awarded several national and international awards including Bangladesh Academy of Science Gold Medal awards 2010 for his remarkable contribution to scientific community. He is also awarded and honored by various social and academic institutes in home and abroad, He is also selected as Fellow of International Union of Pure and Applied Chemistry (IUPAC). His name was published in How’s Who in World in 1998. He visited more than 22 countries for participating different seminars, workshops, symposiums, conferences as invited speaker or speaker.

Abstract:

Bio-active bi-layer thin film having both bio-adhesive and non-adhesive end composed of polyvinyl alcohol (PVA) and gelatin/chitosan/polyethylene glycol (PEG) blend was developed for biomedical applications especially as an alternative of advanced tissue scaffold. The developed composite film was subjected to mechanical, thermal and physico-chemical characterization such as tensile strength (TS) and elongation at break (Eb), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), fluid drainage capacity and biocompatibility. Suitable packaging was also selected and stability study and aging test of the composite film were performed after packing. The incorporation of chitosan and PEG into gelatin showed improved mechanical properties of both TS and Eb, which suggested the occurrence of interaction among gelatin, chitosan and PEG molecules in the composite film. The prepared thin films were irradiated by gamma radiation (25kGy) for further crosslinking and sterilization. The presence of crosslinking as an interaction of above three polymers was also confirmed by FTIR study. Results from the DSC study suggested increased thermal stability after crosslinking. On the other hand, water uptake studies suggested excellent fluid drainage capability and hydro-stability of the composite film. The proposed dressing also showed excellent biocompatibility. Based on the studies related to the performance with confirmed identity, we concluded that our developed bi-layer film is very potential as an ideal wound dressing material.

Speaker
Biography:

Egle Conforto, an Italian and Brazilian materials and biomaterials scientist, is specialized in Scanning and Transmission Electron Microscopy, which is the red wire of her career. She obtained her BSc degree in Physics and her MSc in Materials Science at Sao Paulo University in Brazil, and worked for 8 years in R&D using electron microscopy. Her PhD degree in materials for nanoelectronics applications was obtained at Ecole Polytechnique Fédérale de Lausanne, Switzerland, where she worked for 10 more years as head of new projects in biomaterials analyzed by Electron Microscopy. Since 2004 she is the Head of the Electron Microscopy Laboratory at University La Rochelle, being the responsible for its management and for research projects in corrosion and in hydrogen precipitation in Ti and Zr. She is also responsible for the supervisor of master and PhD research works, as well as for undergraduate, graduate and continuing education in electron microscopy

Abstract:

We propose an optimized methodology using Scanning Electron Microscopy (SEM) in environmental mode to study the surface characteristics and the internal structure of biopolymer capsules. Water vapor pressure in the 1.3 – 2.0 mbar range is introduced in the SEM specimen chamber during analyses to improve the electrical and thermal conductivity of the capsule surface, and to preserve it from damage. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving its original morphology. In particular, it avoids introducing preparation artefacts which could modify the capsule surface and shape, and mask information concerning important feature like porosities, roughness, coating continuity and cracks. Furthermore, chemical contrast is preserved in Backscattered Electron (BSE) images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope etc… Figures 1a and b show the surface morphology of uncovered capsules constituted of an inorganic salt by secondary electrons (SE) images. In Figure 1c and d, BSE images of the same salt coated by 10% of type A gelatin allows evaluating the coating permeability and the coating-core interactions. This information is also obtained from Figs. 1e and f where capsules of the same salt were covered by hydrogenated vegetable oil. We can observe fine details of gelatin and mainly fatty coatings, which are difficult to be analyzed by standard SEM techniques. For some simple fatty molecules like stearic acids for instance, environmental Energy Dispersive Spectroscopy (EDS) analyses have been successfully performed to obtain the relative concentration C/O.  Finally, this methodology provides a reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality which is essential for the technological progress in this domain.

Speaker
Biography:

Martin Koller is working in the Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/III, 8010 Graz, Austria

Abstract:

Scope: Value-added conversion of waste streams form food industry towards microbial biopolyesters [poly(hydroxyalkanoates), (PHAs)], used as biodegradable “green plastics”, is presented by two case studies: The utilization of lipid-rich waste fraction from slaughtering and rendering industry and of carbohydrate-rich waste from dairy industry. Process viability is demonstrated based on experimental results and economic appraisals, and by introducing strategies for the recycling of waste streams of the PHA production process itself.

 

Background: Our increasing demand for safe and convenient packaging materials and other plastics motivated mankind to produce more than 300 Mt annually of highly recalcitrant plastics, which are predominately based on limited fossil resources. Resulting piles of plastic waste, greenhouse gas emissions, global warming, together with the ongoing depletion of the fossil resources, provoked a tremendously dynamic “green plastic” market. Critically analysing various available “green plastics” often reveals severe shortcomings regarding the attributes “biobased”, “biodegradable”, “compostable”, and “biocompatible” that “green plastics” have to fulfil according to valid regulations [1]. In this context, the life cycle of PHAs, accumulated as microbial intracellular carbon- and energy reserves, justifies classifying them as “green plastics”. They are based on renewable resources and undergo complete biodegradation during composting. Molecular composition and material performance of PHA are pre-defined in statu nascendi during biosynthesis. Chemically, PHAs encompass thermoplastic short chain length PHA (scl-PHA) and elastomeric medium chain length PHA (mcl-PHA). Possible fields of implementation encompass compostable packaging, medical and pharmaceutical formulations and items, biodegradable latexes, or nano-particles. Low-quality PHAs can be converted to chiral compounds, novel biofuels or other green energy carriers [2]. PHAs must compete with their petro-chemical opponents both in terms of material performance AND economically. Up to now, PHA production resorts to expensive feedstocks of nutritional value, thus contributing to the current “plate-vs.-plastic” controversy. Switching to carbon-rich waste-streams of diverse industrial processes upgrades industrial waste streams, preserves food resources, and enhances the economics of PHA production [2].

 

Our case studies: Availability of suitable carbon-rich feedstocks defines the location of an envisaged PHA production facility. Processes developed in our recently performed R&D projects (acronyms ANIMPOL and WHEYPOL), financed by the EC, resort to abundantly available waste streams of the European food industry:

  • ANIMPOL project: Surplus lipids from slaughterhouses (annual quantities in Europe: 500,000 t) can be transesterificated to crude glycerol (CG) and fatty acid esters (FAEs, biodiesel). Saturated FAEs (SFAE) counteract the application of biodiesel as engine fuel, but can be converted to PHA. Integrating PHA production into existing biodiesel facilities, SFAE-based PHA can be produced at less than 2 €/kg. Both SFAE and CG constitute precious carbon sources for production of either thermoplastic scl-PHA or highly elastic, amorphous mcl-PHA. [3-5]
  • WHEYPOL project: In Europe, more than 14 Mt of surplus whey accrue at dairies every year, which causes growing environmental concern. Especially in Northern Italian regions, numerous huge dairy companies are located, which dispose of around 1 million litres of whey daily, often by simply pouring it into the sea. We profited from the fact that lactose, whey´s main carbohydrate, acts as substrate in various bioprocesses like PHA production, and used it to produce thermoplastic scl-PHA. Here, cost estimations suggest an already competitive production price below 3 €/kg [6].
  • In addition to the choice of the appropriate raw materials, it is pivotal to close the material cycles of the PHA production process itself and of the subsequent PHA-recovery process, especially when using extremely halophilic microbial production strains, which require environmentally hazardous cultivation media [7]. Recycling experiments revealed that highly saline spent fermentation broth and cell debris can successfully be returned to subsequent fermentation batches as microbial salt- and nutrient source; this approach lowers the overall PHA production costs, and reduces environmental risks, as was demonstrated by LCA studies. Such LCA studies clearly demonstrated the environmental superiority of our novel processes compared to the life cycle of petrol-based plastics [8-10].

Speaker
Biography:

Muthuvinayagam have completed M.Sc., Ph.D.  Presently, I am heading the department of Physics, Kalasalingam University in India.  I have 14 years of teaching and seven years of research experience.  I have published many articles in reputed journals & conferences. I have written two engineering Physics books also. I have organized some research programmes

Abstract:

Enhancing the properties of polymer electrolytes are very important to improve the performance of energy storage devices like batteries, super- capacitors, sensors, dye-sensitized solar cells and fuel cells. Solid polymer blend electrolytes are prepared by using three different biodegradable polymers PVA,PVP and PEG. PVA:PVP:PEG(40:40:20Mwt%) system is found to the optimized one based on their amorphous nature. Alongwith the optimized ratio, different Mwt% of Sodium nitrate are doped  and polymer electrolytes are prepared by solution casting method. The prepared polymer electrolytes are investigated by X-Ray Diffraction, Scanning Electron Microscope and and Ac impedance technique. The XRD analysis reveals the increase in  amorphous nature during the addition of NaNO3 with optimized polymer blend.  The scanning electron microscope images show the blurred nature of polymer surface that leads for improving ionic conductivity.  At room temperature, the maximum ionic conductivity is 1.03x10-6 S/cm for 10Mwt% of NaNO3 doped system with PVA:PVP:PEG(40:40:20Mwt%). The ionic conductivity increases with increase in temperature due to the increase of free volume or segmental motion in polymer electrolytes. The dielectric properties of the electrolytes are also analyzed. The ionic and electronic transference number are measured by Wagner polarization technique

Speaker
Biography:

Abstract:

The unique mechanical and structural features of microbial cellulose (MC) make this polymer a promising starting material for applications in wound dressing and skin regeneration.1,2 MC presents a higher degree of crystallinity compared to plant cellulose, which results in better mechanical properties such as higher tensile strength and Young’s modulus. Moreover, the hydrogel-like structure enables MC to incorporate up to more than 90% its weight of water, ensuring an optimal level of moisture where applied.3 However, limitations to its use are related to the lack of antibacterial properties. Bacterial infections represent one of the major issues of concern for modern medicine because of the increasing resistance of bacteria against the traditional treatments.4,5 In this context, the need of novel strategies has become critical. HyMedPoly is a European project involving academic, industrial and clinical partners with an intent to generate a novel class of drug-free antibacterial materials based on natural and synthetic polymers as well as inorganic substrates. The focus of the research carried out at University of Westminster is to develop bacterial polymers with antibacterial properties for biomedical applications. In particular, this study aims to produce and chemically modify bacterial cellulose to obtain intrinsically active materials for wound dressing applications. A simple one-step reaction was performed to achieve the functionalization of the cellulose. The modified material was characterized using solid-state techniques such as Energy-dispersive X-ray Spectroscopy (EDX) and Fourier-Transformed Infra-Red (FT-IR). The activity of the antibacterial groups was evaluated by studying the inhibitory effect against Gram positive bacteria Staphylococcus aureus. Scanning electron microscopy (SEM) performed on modified MC samples after incubation with the bacteria showed a cell lysis based antibacterial activity (Fig. 1). Biocompatibility was assessed by testing the indirect cytotoxicity and the direct biocompatibility of the functionalised material using the HaCat cell line, a human keratinocyte cell line

Speaker
Biography:

Abstract:

Engineering materials have their path in many sectors due to their good performance compared to metals. However, there is a concern on the massive usage of such materials with regards to the degradation and recycling. Nowadays, there are many attempts are intending to reduce the impact of polymers on environments. One the technique is to incorporate natural fibres in synthetic polymers. In this article, the impact of natural fibres on mechanical and tribological behaviour of polymeric composites is addressed conceding different natural fibres and polymers. The main findings promotes the usage of natural fibres as alternative to the synthetic fibres with some considerations related to the interfacial adhesive of the fibres with the matrix.

Speaker
Biography:

Negin Farshchi is a recent Polymer Engineering graduate with a master degree from the Islamic Azad University science and research branch of Tehran, looking to utilize her current skills and knowledge and also help her to further develop these skills. Her eventual career goal is to research and try to expand the horizon of polymer science in order to achieve a dream which is a green world and healthier human beings.

Abstract:

Soybean oil, castor oil and rapeseed oil are   biodegradable vegetable oils dominating today’s food oil market. The polyunsaturation of these oils and their availability in addition to the environmental hazards of common plasticizers and processing oils, makes it possible to use these natural oils as a compounding ingredient in polymeric compounds like Rubber or PVC compounds. Prediction of solubility between different materials is an advantage in many ways, one of the most convenient ways to know the compatibility of materials is to determine the degree of solubility of them in each other, the concept of “solubility parameter” can help practitioners in this way.

In this study, the solubility parameter of vegetable oils and interaction parameters and their dependence on temperature and gas flow rate was determined by inverse gas chromatography technique.

Results show that there are three different areas in respect to flow rate. Slow, stable and fake marker areas and suggest that there is a relationship between fluids dynamic and solubility parameter value. Best flow rate was determined to be 30 ml/min. Despite the Flory Huggins theory prediction there is no clear trend for Flory Huggins interaction parameter dependence on temperature. Also, the negative values for Flory Huggins interaction parameter were achieved by IGC method which could not be evaluated through the Flory Huggins theory. The solubility parameter will decrease by increasing temperature, and it will increase by increasing flow rate.

Speaker
Biography:

Dr. Lovely Mathew has completed her Ph D from Cochin University of Science and Technology in 2006. She was the  Professor of Chemistry Faculty in Newman College, Kerala since 1981. After her retirement in 2015, now she is working as a Professor and Project coordinator (Research) in Viswajyothi college of Engineering and Technology, Vazhakulam, Muvatupuzha, Kerala, India. She has published more than 20 papers in reputed international/national journals and has presented several research papers in various international conferences abroad. Her research area is natural fibre/nanocelluose reinforced polymer composites/Nanocomposites. She has completed several major research projects funded by DST, UGC KSCSTE, etc.. She is a registered guide of International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala ,India

Abstract:

A cost effective green approach has been used for the preparation of cellulose nanocrystals (CNC) from isora fibre which is a bast fibre obtained from the bark of Helicteres isora plant. The process involves microwave liquefaction followed by persulphate treatment. CNC’s were extensively characterized by SEM, TEM, AFM, TGA WAXRD etc; to establish the morphology, aspect ratio, crystallinity, thermal stability etc. The aim of this work is to study the property enhancement of Poly butyl succinate (PBS)- hyper branched polyester polyols (HBPP) blends by adding CNC’s  at different proportions to give green composites with potential applications in areas such as food packaging and medicines.  Biodegradable (PBS) / (HBPP) blended films were processed using a brabender twin-screw compounder machine. This paper reports a single step reactive extrusion process for the fabrication of thermally stable PBS-HBPP grafted CNC’s bio nanocomposite films using dicumyl peroxide as a cross linking agent.  The effect of addition of CNC particles on the mechanical, thermal and barrier properties of PBS-HBPP blends were studied.  Spherulitic morphology, chemical structure and crystalline structure of neat PBS and PBS-HBPP blended films were examined by optical polarizing microscopy (OPM), FTIR spectroscopy and WAXRD respectively.. The addition of HBPP increased the toughness, and wettability of the film. FTIR spectroscopy studies showed that the PBS-HBPP blend was grafted on CNC through a stable C- C bond formation. This strong chemical link led to the efficient transfer of modulus of CNC’s to the PBS-HBPP blend thereby increasing the tensile strength and young’s modulus to a greater extent. Significant reduction in water vapour and oxygen permeability rates was also observed for PBS-HBPP nanocomposite over neat PBS. Experimentally, it was observed that the CNC’s wt. content, size and morphology are the parameters that substantially influence the mechanical, thermal and barrier properties of the composite samples. The surface of the nano particles act as initiators for network formation, as observed by a scanning electron microscope (SEM) image of the fractured sample

Speaker
Biography:

Abstract:

According to the global trend in the world, many studies are conducted to valorize plant biomass as materials1,2. Plant fibers are used to reinforce composites and to enhance their properties. The lignin fraction produced by wood and paper industries, which is burnt now to produce energy3, should be valorized through chemistry for the synthesis of high value-added compound. In this work, ferulic acid and its derivatives, which can be obtained from lignin, were used to influence the aspect ratio of lignocellulosic fibers, one of the key parameters for mechanical thermoplastic's fiber reinforcement.

Two ferulic acid derivatives were synthesized by enzymatic chemistry following a green process4,5,6 and subsequently pulverized on hemp fibers. The first derivative was a macrobisphenol while the second one was obtained after the methylation of the phenolic functions of the latter. These pretreated lignocellulosic fibers were incorporated in a polycaprolactone matrix during a single screw extrusion process. Tensile test specimens were injected and mechanical properties were measured. Chemical analysis were conducted by SEC to measure the impact of the ferulic acid derivatives on the molar mass of the matrix. Rheological analysis provided information about the plasticizing effect of the ferulic acid derivatives on the materials. Hemp fibers, ferulic acid derivatives and crude polycaprolactone were also analyzed by Raman spectroscopy to define their spectral profile7.

The microstructure of the composites was determined by Confocal Raman Imaging and was correlated with the mechanical properties measured by tensile tests. We evidenced that the very single methylation of the macrobisphenol led to significant differences on the mechanical properties and the structure of the composites. Two hypothesis were investigated to explain such effects: a stronger interaction between hemp fibers and ferulic acid derivative changing the microstructure and/or an increased plasticizing effect of the ferulic acid derivative on the polymeric matrix.

Speaker
Biography:

Shuhua Zhang has completed his PhD from Harbin University of Science and Technology, and visiting studies from Lawrence Berkeley National Laboratory as a senior research scholar from September of 2013~ September of 2014. She is the associate professor of materials in polymer materials and engineering of Shanghai University of Engineering Science now. She has published more than 30 papers, an academic monographs and owned 4 authorized invention patents of China

Abstract:

In order to improve the mechanical properties of polylactic acid(PLA), PLA/MgAlCu-LDH/polyvinyl pyrrolidone(PVP) composite microsphere was successfully prepared on the basis of  seminal emulson polymerization with PLA and PVP as monomer, MgAlCu-LDH as intercalating agent. Design-Expert 8.5 software was employed to optimize the processing technology with two steps. Firstly, single factor was analyzed based on the mass fraction ratio of  MgAlCu-LDH to PLA, PVP concentration and stirring speed range being 1/15~1/8, 1~2%, 800~1200r/min, respectively. Secondly, the interaction effects of three factors were discussed according to the analysis of the software. The results show that the influence factors to microspheres size were as follows: the stirring speed > the mass fraction ratio of  MgAlCu-LDH to PLA > PVP concentration. The optimized  processing technology of microspheres indicates that the mass fraction ratio of  MgAlCu-LDH to PLA is 1/15, the concentration of  PVP is 2%, the stirring rate is 1200r/min. The structure and morphology of the dried frozen composite microsphere were characterized by XRD, FT-IR and SEM. The intercalation of part of the PLA into the gap of MgAlCu-LDH would be responsible for the new peaks on XRD spectra of MgAlCu-LDH and the disappear peaks at 1750cm-1, 1200cm-1 assigned to C=O on FT-IR spectra of PLA, which proves PLA/ MgAlCu-LDH/PVP composite microsphere  was successfully prepared. Interestingly, some tinny channels resulted from volatile solvent  on the surface of microsphere may be benefit for biocompatible

Speaker
Biography:

Abstract:

DOXHYD-HPMA is doxorubicin bound through hydrazone bond to synthetic polymeric carrier based on N-(2-hydroxypropyl)methacrylamide. It is effective anticancer polymeric prodrug with decreased side-toxicity and the ability to induce immunogenic cancer cell death releasing site-specific tumor antigen and thus acting as endogenous vaccine. We have compared chemo-immunotherapy combination treatment of EL4 T cell lymphoma and 4T1 breast carcinoma with DOXHYD-HPMA and with immune checkpoint blocking anti-CTLA-4 and anti-PD-1 MAbs either alone or in a mixture. To document the role of intestinal microbiota we use germ-free (GF) mice and GF mice monocolonized with Bifidobacterium thetaiotamicron. Acute model of disease when mice are transplanted once with a lethal dose of tumor cells was compared with chronic model where mice are injected six times every other day with a low number of tumor cells. Healthy mice treated with anti-CTLA-4 and anti-PD-1 mAbs did not show any signs of toxicity while significant co-toxicity was seen in cancer-bearing mice. Treatment with checkpoint inhibitors only exerted a very limited cancer response as no long term survivors (LTS) were recorded. On the other hand more than 60% of mice injected also with therapeutically suboptimal dose of DOXHYD-HPMA survived disease-free for more than 100 days. Those suffering from chronic model of cancer showed considerably higher proportion of PD-1+ cells in tumor microenvironment and reacted substantially better to anti-CTLA-4 or anti-PD-1 treatment than mice with the acute model

Maximilian Lackner

Lackner Ventures & Consulting GmbH, Vienna, Austria

Title: Sustainable PHB production from CO2 and sunlight using cyanobacteria
Speaker
Biography:

Abstract:

The use of conventional plastics has become a huge environmental concern. is a growing concern, leading to resource depletion and littering (e.g. microplastics pollution of the sea). Polyhydroxybutyrate (PHB) is formed as energy storage compound by several microorganisms. It has thermoplastic properties and can be a replacement for PP. PHB is fully degradable, also in the marine environment. Today, PHB is synthesized by heterotrophic bacteria using sugar fermentation. The relatively high costs of raw materials and continuous oxygen supply for the processing make PHAs expensive in comparison to other petroleum-derived plastics. Methodology and theory: The alternative is to use certain oxygenic cyanobacteria as cell factory. Cyanobacteria can store PHB under nutrient (P, N) limitation from renewable and sustainable resources sunlight and CO2 and due to their minimal nutrient requirement are the most promising host system for PHB production. However the growth rate and the PHB yield stay low. There exists no general method to increase PHB yield in cyanobacteria. This work aims at making cyanobacteria competitive by optimization of growth conditions and by strain selection. Findings: We screen for wild type strains which can naturally accumulate PHB.  During our systematic screening we have discovered a cyanobacterium sp.  strain which naturally accumulates a high PHB content under N and P limitations in comparison to other existing strains. The improvement of the strain is possible using process engineering and natural mutations. Significance: Our project can develop an economically superior bioprocess to enhance biomass growth and PHB productivity and prove feasibility to use CO2 for production of biodegradable plastics